整数求和公式

| No Comments | No TrackBacks

1+2+3+...+N = N*(N+1)/2
http://www.geocities.com/nummolt/help/obbl/obblh01.html


1^2+2^2+3^2+...+N^2 = N*(N+1)*(2N+1)/6 = N^3

由于(n+1)^3=n^3+3n^2+3n+1
所以
2 ^3 = 1 ^3 + 3* 1 ^2 + 3* 1 + 1
3 ^3 = 2 ^3 + 3* 2 ^2 + 3* 2 + 1
4 ^3 = 3 ^3 + 3* 3 ^2 + 3* 3 + 1
5 ^3 = 4 ^3 + 3* 4 ^2 + 3* 4 + 1
... ...
n ^3 = (n-1)^3 + 3*(n-1)^2 + 3*(n-1) + 1
(n+1)^3 = n ^3 + 3* n ^2 + 3* n + 1
上面所有式子相加,并在两边同时减去相同的项:

(n+1)^3 = 1^3 + 3*[1^2+2^2+3^2+4^2+...+(n-1)^2+n^2]+3*[1+2+3+4+...+(n-1)+n]+n

不妨记[1^2+2^2+3^2+4^2+...+(n-1)^2+n^2]为S。
则n^3+3n^2+3n+1=1+3*S+3*(1+n)*n/2+n
化简得:S=n(n+1)*(2n+1)/6

--EOF--

Related Entries

No TrackBacks

TrackBack URL: http://www.guduo.net/cgi-bin/mt/mt-tb.cgi/48

Leave a comment

Pages

May 2016

Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31        

About this Entry

This page contains a single entry by 谷多 published on March 25, 2008 11:23 PM.

html页面中meta Content-Type charset放在页面最开始的地方 was the previous entry in this blog.

一年中如何买股票才能获得最大利润呢? is the next entry in this blog.

Find recent content on the main index or look in the archives to find all content.